
A fast algorithm for powerful alliances in trees

Ararat Harutyunyan ?

Department of Mathematics
Simon Fraser University
Burnaby, BC, V5A 1S6

Canada
aha43@sfu.ca

Abstract. Given a graph G = (V,E) with a positive weight function
w on the vertices of G, a global powerful alliance of G is a subset S of
V such that for every vertex v at least half of the total weight in the
closed neighborhood of v is contributed by the vertices of S. Finding
the smallest such set in general graphs is NP-complete, even when the
weights are all the same. In this paper, we give a linear time algorithm
that finds the smallest global powerful alliance of any weighted tree T =
(V,E).

Keywords: Alliances, powerful alliances, weighted trees, algorithm

1 Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedetniemi
and Kristiansen [9]. They introduced the concepts of defensive and offensive al-
liances, global offensive and global defensive alliances and studied alliance num-
bers of a class of graphs such as cycles, wheels, grids and complete graphs. The
concept of alliances is similar to that of unfriendly partitions, where the prob-
lem is to partition V (G) into classes such that each vertex has at least as many
neighbors outside its class than its own (see for example [1] and [10]). Haynes
et al. [7] studied the global defensive alliance numbers of different classes of
graphs. They gave lower bounds for general graphs, bipartite graphs and trees,
and upper bounds for general graphs and trees. Rodriquez-Velazquez and Sigar-
reta [15] studied the defensive alliance number and the global defensive alliance
number of line graphs. A characterization of trees with equal domination and
global strong defensive alliance numbers was given by Haynes, Hedetniemi and
Henning [8]. Some bounds for the alliance numbers in trees are given in [6].
Rodriguez-Velazquez and Sigarreta [12] gave bounds for the defensive, offensive,
global defensive, global offensive alliance numbers in terms of the algebraic con-
nectivity, the spectral radius, and the Laplacian spectral radius of a graph. They
also gave bounds on the global offensive alliance number of cubic graphs in [13]

? Research supported by FQRNT (Le Fonds québécois de la recherche sur la nature
et les technologies) doctoral scholarship.

and the global offensive alliance number for general graphs in [14] and [11]. The
concept of powerful alliances was introduced recently in [3].

Given a simple graph G = (V,E) and a vertex v ∈ V , the open neighborhood
of v, N(v), is defined as N(v) = {u : (u, v) ∈ E}. The closed neighborhood of v,
denoted by N [v], is N [v] = N(v)∪ {v}. Given a set X ⊂ V , the boundary of X,
denoted by δ(X), is the set of vertices in V −X that are adjacent to at least one
member of X.

Definition 1. A set S ⊂ V is a defensive alliance if for every v ∈ S, |N [v]∩S| ≥
|N [v]∩(V −S)|. For a weighted graph G, where each vertex v has a non-negative
weight w(v), a set S ⊂ V is called a weighted defensive alliance if for every
v ∈ S,

∑
u∈N [v]∩S w(u) ≥

∑
u∈N [v]∩(V−S) w(u). A (weighted) defensive alliance

S is called a global (weighted) defensive alliance if S is also a dominating set.

Definition 2. A set S ⊂ V is an offensive alliance if for every v ∈ δ(S), |N [v]∩
S| ≥ |N [v] ∩ (V − S)|. For a weighted graph G, where each vertex v has a non-
negative weight w(v), a set S ⊂ V is called a weighted offensive alliance if for
every v ∈ δ(S),

∑
u∈N [v]∩S w(u) ≥

∑
u∈N [v]∩(V−S) w(u). A (weighted) offensive

alliance S is called a global (weighted) offensive alliance if S is also a dominating
set.

Definition 3. A global (weighted) powerful alliance is a set S ⊂ V such that
S is both a global (weighted) offensive alliance and a global (weighted) defensive
alliance.

Definition 4. The global powerful alliance number of G is the cardinality of a
minimum size global (weighted) powerful alliance in G, and is denoted by γp(G).
A minimum size global powerful alliance is called a γp(G)-set.

There are many applications of alliances. One is military defence. In a net-
work, alliances can be used to protect important nodes. An alliance is also a
model of suppliers and clients, where each supplier needs to have as many re-
serves as clients to be able to support them. More examples can be found in
[9].

Balakrishnan et al. [2] studied the complexity of global alliances. They showed
that the decision problems for global defensive and global offensive alliances are
both NP-complete for general graphs. It is clear that the decision problems to
find global defensive and global offensive alliances in weighted graphs are also
NP-complete for general graphs.

The problem of finding global defensive, global offensive and global powerful
alliances is only solved for trees. [5] gives a O(|V |3) dynamic programming algo-
rithm that finds global defensive, global offensive and global powerful alliances
of any weighted tree T = (V,E).

In this short paper we give a O(|V |) time algorithm that finds the global
powerful alliance number of any weighted tree T = (V,E). Combining our result
with the obvious lower bound, we actually show that the problem of finding
global powerful alliance number of any weighted tree T = (V,E) is Θ(|V |).

In the next section, we present a linear time algorithm for minimum cardi-
nality powerful alliance in weighed trees.

2

2 Powerful Alliances

In this section, we give a linear time algorithm that finds the minimum cardi-
nality weighted global powerful alliance number of any tree. We assume all the
weights are positive - the algorithm can be easily modified for the case where
the weights are non-negative.

For a set S ⊂ V define w(S) :=
∑

u∈S w(u).

It is clear that when the weight function is positive, the global powerful
alliance problem can be formulated as follows.

Observation 1 Let G = (V,E) be a graph, and w : V → R+\{0} a weight
function. Then a global powerful alliance in G is a set S ⊂ V such that for all
v ∈ V , ∑

u∈N [v]∩S

w(u) ≥ w(N [v])

2
.

Note that the condition that S is a dominating set is automatically guar-
anteed because the weights of all vertices are positive. We will use the above
formulation in our algorithm.

Definition 5. For v ∈ V , the alliance condition for v is the condition that∑
u∈N [v]∩S w(u) ≥ w(N [v])

2 .

2.1 Satisfying the alliance condition for a vertex

Throughout the algorithm, for every vertex v we need to find the smallest num-
ber of vertices necessary in the closed neighborhood of v to satisfy the alliance
condition for v. To solve this problem, we use the following algorithm.

Given positive numbers a1, a2, ..., an, FindMinSubset(a1, a2..., an) is the prob-
lem of finding the minimum k such that there is a k-subset of {a1, a2, ..., an} the
elements of which sum up to at least 1

2

∑n
i=1 ai. We give an algorithm that

solves this problem in time O(n). The algorithm also finds an instance of such
a k-subset. Furthermore, out of all the optimal solutions it outputs a set with a
maximum sum.

Algorithm FindMinSubset[A,n,T].
Input: An array A of size n of positive integers; a target value T .
Output: The least integer k such that some k elements of A add up to at least T .

1. If n = 1, return 1.
2. Set i = dn2 e.
3. Find the set A′ of the i largest elements of A and compute their sum M .
4. If M > T return FindMinSubset[A′, i, T]; if M = T return i; else return
i+ FindMinSubset[A−A′, n− i, T −M].

3

Lemma 1. The above algorithm solves the problem FindMinSubset(a1, a2, ..., an)
in time O(n). Furthermore, if the solution is k, the algorithm finds the k largest
elements.

Proof. Let S =
∑n

i=1 ai. It is clear that FindMinSubset[A,n, T = S
2] where A

is the array of the elements (a1, a2, ..., an) will solve the desired problem. The
analysis of the running time is as follows. Note that finding the largest k elements
in an array of size n can be done in linear time for any k (see [4]). Therefore,
in each iteration of FindMinSubset, Step 2 and Step 3 take linear time, say
Cn. Since the input size is always going down by a factor of 2, we have that the
running time T (n) satisfies T (n) ≤ T (n/2) + Cn. By induction, it is easily seen
that T (n) = O(n). It is clear that out of all the possible solutions, the algorithm
picks the one with the largest weight.

We now describe the algorithm for weighted powerful alliances in trees.

2.2 An overview of the algorithm

We assume the tree is rooted. For each k, we order the vertices of depth k from
left to right. By C(v) we denote the set of children of v. We define p(v) to be
the parent of v.

In each iteration of the algorithm, we may label some vertices with “+”,
with “?p”, or with “?c”. The “+” vertices are going to be part of the powerful
alliance. Under some conditions, we may also pick some of the vertices labelled
with “?p” or “?c”.

Now, we give a brief intuition behind the algorithm. As noted above, when all
the weights are positive, the global powerful alliance problem is simply finding

the smallest set S ⊂ V such that for every vertex v ∈ V , w(N [v]∩S) ≥ w(N [v])
2 .

Our algorithm is essentially a greedy algorithm. We root the tree at a vertex,
and start exploring the neighborhoods of vertices starting from the bottom level
of the tree. The vertices which have already been chosen to be included in the
alliance set S are labelled with “+”. For each vertex v, we find the smallest
number of vertices in its closed neighborhood that need to be added to the
vertices labelled “+” in v’s closed neighborhood to satisfy the alliance condition
for v. We do this using the algorithm FindMinSubset. In some cases we may
get more than one optimal solution and it will matter which solution we pick
(for example, if there is an optimal solution containing both v and p(v) then
this solution is preferable when we consider the neighborhood of p(v)). The
complication arises when there is an optimal solution containing v, but not p(v),
and there is an optimal solution containing p(v). If w(v) > w(p(v)), then it is
not clear which solution is to be preferred because v is at least as good as p(v)
for satisfying the alliance condition for p(v), but choosing p(v) is preferable for
satisfying the alliance condition for parent of p(v), p(p(v)). In general, when we
have to choose between a solution that contains v and one that contains p(v) we
give preference to the solution containing p(v) unless: (i) we can immediately
gain by choosing the solution with v due to choices made in previous iterations

4

(ii)when satisfying the alliance condition for p(v), it might theoretically be better
to have chosen v. In case (ii), we label both v and p(v) with “?”, v with “?c”, and
p(v) with “?p”, and delay satisfying v’s alliance condition for later iterations.

2.3 Labels and Sets

In the algorithm, we use four labels for vertices: “+”, “?c”, “?p” and “?c+”. We
assign a vertex v a label “+” when we can claim that v is contained in some
minimum cardinality powerful alliance. Generally, we assign a vertex v a label
“?c” when we have a choice of taking v or p(v) to satisfy the alliance condition
for v (but we can’t choose both v and p(v)) and w(v) > w(p(v)). In this case, we
also label p(v) with “?p”. For a vertex u, we define D(u) to be the set of all “?c”
children of u. Note that for every vertex u, eventually we must take u or D(u)
in our alliance, regardless whether these vertices are the best in the sense that
they help satisfy the alliance condition for u. We change the label of a vertex v
from “?c” to “?c+” if for satisfying the alliance condition for p(v) it is better to
choose v than p(v). The reason we label it “?c+” and not “+” is that it may
turn out that p(p(v)), the parent of p(v), will be labelled “+”, and and this may
allow labelling p(v) with “+” and unlabelling of v.

There are two occasions when we label a vertex v with “?p”. The first is when
a child of v is labelled “?c”, as described above. The second case is when we see
no optimal solution containing p(v) that would satisfy v’s alliance condition,
but if p(v) were later labelled “+” for another reason, then there would be
an optimal solution containing v that would satisfy v’s alliance condition. This
solution would be preferable since it can decrease the number of vertices required
to satisfy p(v)’s alliance condition.

We denote by N+[v] to be the set of all vertices in the closed neighborhood of
v which are labelled with “+” at the current stage in the algorithm. For a vertex
v ∈ V , we define Findmin(v) to be the function that finds the smallest set of
vertices in N [v]\N+[v](i.e. the set of vertices not labelled with “+”) that need
to be added to the set of vertices in already labelled “+” in v’s neighborhood,
N+[v], to satisfy the alliance condition for v. If there is more than one such
set, Findmin(v) returns the set with maximum total weight. In the algorithm,
by a solution for v we mean either the set Findmin(v) or a set S such that
|S| = |Findmin(v)| and S ∪ N+[v] satisfies the alliance condition for v. Note
that it could be that Findmin(v) = ∅ since the alliance condition could already
have been satisfied for v. Also, note that finding Findmin(v) is done using the
algorithm FindMinSubset defined previously.

For a set of vertices X none of which are labelled “+”, define Findmin(v) : X
to be the set Findmin(v) under the assumption that the vertices of X are now
labelled “+”. We also have a special set Xv for every vertex v. This is the set
of all children u of v labelled with “?p” with the property that |Findmin(u) :
{u, v}| < |Findmin(u)|. This means that when trying to satisfy the alliance
condition for v, if we see a solution that contains v and u, then we can safely
label u and v with “+”, regardless whether this solution contained p(v) since
we will gain a vertex when solve the alliance condition for u. Therefore, the

5

Xv children of v can be used under some circumstances to satisfy the alliance
condition for v. We have also two recursive functions, Xcollect(v) and Clear(v),
that are used in the algorithm. Xcollect(v) chooses all the X vertices in the
subtree rooted at v, and finally settles the alliance condition for these vertices.
It is used when we know that we can label v with a “+”. Clear(v) erases the
labels of all the non X vertices that have label “?p” in the subtree rooted at v,
and settles the alliance condition for them. Once we reach the root r(T) of the
tree, we no longer have the problem of deciding whether to give the parent of
r(T) a priority over r(T) or its Xr children, since the parent does not exist. We
can then settle the alliance conditions of all the “?” labelled vertices.

The functions Clear(v) and Xcollect(v) are as follows:

Clear(v)
For every child u of v labelled “?p” AND u /∈ Xv,

Remove the label “?p” (and “?c” if it exists) of u
Replace all the labels of “?c+” from its children by “+”.
Clear(u).
F indmin(u) and label the chosen vertices by “+”.

Xcollect(v)
For every Xv child u of v

Label u with “+”.
Remove “?p” label from u
Remove all “?c+” labels from children of u.
Xcollect(u).
F indmin(u), and label chosen vertices with “+”.

If vertex r is the root, we assume that p(r) = ∅ and w(p(r)) = 0. Also, we
will say that p(r) has label “+” so that we are in Case 1 or in Case 2.1.

2.4 The Algorithm

The algorithm has two cases: the vertex v under consideration is labelled “+”, or
“?p” or unlabelled (it can only receive the label “?c” during the iteration). Each
case has two subcases depending on the label of p(v). We often switch between
the cases. For example, if the vertex v under consideration was unlabelled (Case
2) and gets a label “+”, we jump to Case 1 and continue from there.
All Xv’s are initially set to Xv := ∅.

Algorithm Weighted Powerful Alliances in Trees

for(i = 0 to d) AND for all (vertices v at depth d− i) do

6

Algorithm 1 Algorithm for finding Minimum Cardinality Weighted Powerful
Alliance in a tree T . Case 1: v is labelled with “+”.

1: Case 1.1: v has no “?p” children.
2: if p(v) is labelled “+” then
3: Findmin(v) and take any solution. Label all the picked vertices with “+”.
4: else if [p(v) is unlabelled or labelled “?p”] then
5: Findmin(v)
6: if ∃ solution containing p(v) then
7: choose this solution. Label all picked vertices with “+”.
8: if v had label “?p” then
9: remove this label, and remove the labels “?c” from all its children.

10: else
11: Findmin(v)
12: Label picked vertices with “+”
{Case1.2: v has at ≥ 1 “?p” child.}

13: Xcollect(v)
14: Clear(v)
15: Go back to Case 1.1

Algorithm 2 Case 2: v is labelled “?p” or unlabelled.

1: Case 2.1: p(v) is labelled “+”.
2: Let D(v) be the set of children of v that have a label “?c”.
3: Xv := Xv ∪ {u ∈ C(v) : label(u) = “?p”, |Findmin(u) : {u, v}| <
|Findmin(u)|}

4: Define X ′v = Xv ∪ v ∪ p(v)
5: Findmin(v).
6: if ∃ solution 3 v OR @ solution ⊃ D(v) OR |Findmin(v) : {Xv ∪ v}| <
|Findmin(v)| then

7: Label v with “+”.
8: Remove “?c” label’s from v’s children.
9: Go to Case 1.

10: else
11: Choose a solution S ⊃ D(v). Label vertices of S with “+”
12: Remove “?c” labels from vertices in D(v), remove “?p” label from v
13: Set Xu := ∅ for every vertex u in the subtree rooted at v
14: Clear(v).

7

Algorithm 3 Case 2: v is labelled “?p” OR is unlabelled.

1: Case 2.2: p(v) is labelled “?p” OR is unlabelled.
2: Let D(v) be the set of children of v that have a label “?c”.
3: Findmin(v)
4: Xv := Xv ∪ {u ∈ C(v) : label(u) = “?p”, |Findmin(u) : {u, v}| <
|Findmin(u)|}

5: X ′v = Xv ∪ {v} ∪ {p(v)}
6: if |Findmin(v) : {Xv ∪ v}| ≤ |Findmin(v)| − 2 OR ∃ solution S such that
|S ∩X ′v| ≥ 2 OR ∃ solution S such that S ⊃ {v, p(v)}. then

7: Label v with “+”, remove its “?p” label. Remove “?c” labels from v’s
children. Go to Case 1.

8: else if ∃ a solution S such that S ⊃ {D(v) ∪ p(v)} then
9: Let R be a solution 3 p(v) with maximum total weight.

10: if Xv ∪ {v} ∪R\u ≥ w(N [v])/2 for some u ∈ R, u 6= p(v) then
11: Label v with “+”, remove its “?p” label.
12: Remove “?c” labels from v’s children.
13: Go to Case 1.
14: else if Xv ∪ {v} ∪R\p(v) < w(N [v])/2 OR w(v) ≤ w(p(v)) then
15: Label p(v) with “+”.
16: if p(v) had label “?p” then
17: remove it, and remove “?c” labels from p(v)’s children.
18: Go to Case 2.1
19: else
20: Label p(v) “?p” if it is not already. Add a label “?c” to v. Relabel “?c”

vertices in D(v) by “?c+”.
21: if |Findmin(v) : X ′v| < |Findmin(v) : {p(v)}| then
22: Xp(v) := Xp(v) ∪ {v}. Label v with “?p”, if v is unlabelled.
23: Clear(v)
24: else if ∃ a solution S such that S ⊃ D(v) then
25: if |Findmin(v) : {Xv ∪ v}| < |Findmin(v)| then
26: Label v with “+”, remove its “?p” label.
27: Remove “?c” labels from v’s children.
28: Go to Case 1.
29: else
30: Relabel “?c” labels of vertices in D(v) by “?c+”.
31: if |Findmin(v) : X ′v| < |Findmin(v) : {p(v)}| then
32: Xp(v) := Xp(v) ∪ {v}. Label v with “?p”, if v is unlabelled
33: else
34: Label vertices of S with “+”.
35: Remove “?c+” labels from vertices in D(v)
36: Clear(v).
37: else
38: Label v with “+”. Remove “?p” label from v. Remove “?c” labels from

vertices in D(v). Go to Case 1.

8

An illustration of the algorithm by an example (Fig. 1).

v1 82 v2 100
v3 150

v4 80 v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45
v12 70

v13 35 v14 15
v15 40

v16 25

v1 82 v2 100
v3 150

v4 80 v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45
v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, v3 have been considered (i = 0 in the for loop)

v1 82 v2 100
v3 150

v4 80v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45
v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, ..., v8 have been considered (i = 1 in the for loop)

?c

?p

v1 82 v2 100
v3 150

v4 80v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45 v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, ..., v12 have been considered (i = 2)

?c+

?p
?c

?p

?c

?p

Xv13

v1 82 v2 100
v3 150

v4 80v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45 v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, ..., v15 have been considered (i = 3)

Xv13

?p ?p

v1 82 v2 100
v3 150

v4 80v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45 v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, ..., v16 have been considered (i = 4)

Xv13

Theorem 1. Algorithm Powerful Alliances for Trees correctly computes the
minimum cardinality weighted powerful alliance of a weighted tree T = (V,E) in
time O(|V |).

Due to space restrictions, we omit the proof.

Acknowledgements I wish to thank Dr. Jacques Verstraete for helpful discus-
sions, and Leonid Chindelevitch for indicating Lemma 1.

9

References

1. R. Aharoni, E. C. Milner, K. Prikry, Unfriendly partitions of a graph. J. Combin.
Theory Ser. B 50 (1990), no. 1, 1-10.

2. H. Balakrishnan, A. Cami, N. Deo, and R. D. Dutton, On the complexity of finding
optimal global alliances, J. Combinatorial Mathematics and Combinatorial Com-
puting, Volume 58 (2006), 23-31.

3. R.C. Brigham, R. D. Dutton, T. W. Haynes, S. T. Hedetniemi, Powerful alliances
in graphs, Discrete Mathematics Volume 309 (2009) Issue 8, 2140-2147.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein Introduction to Algorithms,
McGraw-Hill, 2002.

5. B.C. Dean, L. Jamieson, Weighted Alliances in Graphs, Congressus Numerantium
187: 76-82, 2007

6. A. Harutyunyan, Some bounds in alliances in trees, Cologne Twente Workshop on
Graphs and Combinatorial Optimization 2010, accepted.

7. T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Global defensive allliances
in graphs, Electronic Journal of Combinatorics 10 (2003), no. 1, R47.

8. T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, A characterization of trees
with equal domination and global strong alliance numbers, Utilitas Mathematica,
Volume 66(2004), 105-119.

9. S. M. Hedetniemi, S. T. Hedetniemi, and P. Kristiansen, Alliances in graphs,
Journal of Combinatorial Mathematics and Combinatorial Computing, Volume
48 (2004), 157-177.

10. E. C. Milner and S. Shelah, Graphs with no unfriendly partitions. A tribute to
Paul Erdos, 373-384, Cambridge Univ. Press, Cambridge, 1990

11. J. A. Rodriguez-Velazquez, J.M. Sigarreta, On the global offensive alliance number
of a graph, Discrete Applied Mathematics, Volume 157 (2009), Issue 2, 219-226.

12. J. A. Rodriguez-Velazquez, J.M. Sigarreta, Spectal study of alliances in graphs,
Discussiones Mathematicae Graph Theory 27 (1) (2007) 143-157.

13. J. A. Rodriquez-Velazquez and J. M. Sigarreta, Offensive alliances in cubic graphs,
International Mathematical Forum Volume 1 (2006), no. 36, 1773-1782.

14. J. A. Rodriguez-Velazquez, J.M. Sigarreta, Global Offensive Alliances in Graphs,
Electronic Notes in Discrete Mathematics, Volume 25 (2006), 157-164.

15. J. A. Rodriguez-Velazquez, J. M. Sigarreta, On defensive alliances and line graphs.
Applied Mathematics Letters, Volume 19 (12) (2006) 1345-1350.

10

